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3. Understanding graph distribution
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Example: corporation data

§ context: a company (entertainment industry)

§ nodes: 38 executives

§ network: communication between nodes

§ tie: another executive with whom it was important to communicate to get 
work completed effectively (binary, directed ties)

§ individual attributes:
§ experience (number of projects actors have been involved with)
§ level of seniority
§ office membership

§ dyadic attribute: advice (from whom actors received advice)
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Communication network
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(Figure: Robins&Lusher 2012, p. 38)



Communication network
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mutual ties only (Figure: Robins&Lusher 2012, p. 39)



Communication network
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by employee experience (Figure: Robins&Lusher 2012, p. 40)



Communication network

7

by seniority (black: senior) (Figure: Robins&Lusher 2012, p. 40)



Communication network
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by office membership (Figure: Robins&Lusher 2012, p. 41)



Simulated vs observed network

Lusher et al, 
2013 
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Random network Communication network

actors 38 38

arcs 146 146

reciprocated arcs 6 44

transitive triads 53 212

in-2stars 292 313

out-2stars 254 283



Distribution of simple random graph

§ A graph distribution is the set of all possible graphs (in this case on 38 
nodes) with a probability assigned to each graph

§ Uniform distribution of graphs with 44 edges: each graph has equal 
probability if it has exactly 44 edges
§ If it does not have exactly 44 edges the probability is zero

§ U|L = 44
§ U = Uniform distribution of graph
§ | = “given that” or “conditional on”
§ L = number of edges
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Bernoulli distribution

§ A graph distribution is the set of all possible graphs (in this case on 38 
nodes) with a probability assigned to each graph.

§ Bernoulli distribution of graphs: each edge in the graph occurs 
independently with a fixed probability:

§ Like tossing a coin many times
§ Leading to a probability for each graph
§ For 38 nodes, if we make this probability 0.06259, then across the 

entire distribution, the average density will be 0.06259 and the 
average number of edges will be 44.
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Some notations

§ Regard each network tie xij as a random variable which is the unit of the 
analysis

§ Probability of network x is given by a sum of network statistics (X’s)
§ weighted,
§ inside an exponential (binary distribution)
§ normalized,
§ expresses the counts of network configurations in network x
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What we estimate

Possible edges are independent of one another. Configurations in this model 
relate to single possible edges (xij) (and nothing beyond that in a Bernoulli 
graph).
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What we estimate
§ If there was one parameter λij for every possible edge – simply too many.

§ Homogeneity assumption: λij = θ for all i,j. Assumes that the edge effect is 

the same across the entire network.
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§ where L is the number of edges in the observed network θ is an edge or 

density parameter



What are we trying to do?
§ We do not know the theoretical model
§ We want to find out the parameters (= weights for local structural 

configurations)
§ We have many [n(n-1)] observations of ties and the local network 

structure around them
§ These ties are assumed to be the outcomes of the same theoretical model 

(our ERGM)
§ We can use them to estimate the model parameters

§ We want to know how the global network structure might have been built 
up out of small local substructures

§ The parameter estimates permit us to make inferences about this

§ Positive parameter estimates indicate more configurations observed in the 
network than expected by chance

§ Negative parameter estimates indicate fewer configurations than expected by 
chance
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Exercise 1
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Exercise 1

§ Simulating graphs with 38 nodes and fixed density of 0.06259 (U|L = 
44)

§ Simulate the U|L=44 distribution.
§ Take a sample of graphs from the distribution
§ Calculate the number of 2-stars and triangles for each sampled graph.
§ See whether the numbers of 2-stars and triangles are consistent with 

the observed data.
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Exercise 1

§ stars2 are okay-ish.
§ Observed network has 44 edges, 107 2-stars and 12 triangles
§ Not a good model to describe triangles: triangulation in this data very 

unlikely to arise from random graphs conditional
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What we want instead:

§ A statistical model for a network which can be parameterised so that 
important effects in the data are not extreme when the model is simulated.

§ “Important effects” here means the presence of small subgraphs, called 
network configurations.

§ ERGMs can provide such models for a range of configurations relevant to  
social network theory.

19



Dependencies

§ Once we move beyond simple random graph models, we introduce 
dependencies among network tie variables.

§ These express (earlier discussed) various types of network self 
organisation.

§ And we assume that the network is built up of these configurations.
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Generations of dependence assumptions

1. Bernoulli graphs: Network variables are independent of each other

2. Dyadic dependence: for directed graphs – dependence within dyads

3. Markov dependence: Network variables are (conditionally) independent 
unless they share at least one node.

4. Social circuit dependence: Network variables are (conditionally) dependent 
if they create 4-cycles.

Keep in mind dependence also arising from actor attributes.
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Exercise 2
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Exercise 2

§ Use the undirected communication network

§ Try to estimate an edge-only model and save the results

§ Calculate the probability of an existing edge, what is this number?

§ Try to estimate an edge/2-star/3-star/triangle Markov model

§ How did the edge parameter change? Why?

§ (You may find the convergence ratios very bad)
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Markov model

§ Frank and Strauss drew on the work of Besag (1974) in spatial statistics
§ In particular, the Hammersley-Clifford theorem that sets out constraints 

on model form implied by dependence assumptions
§ Dependence graph (for more information see Lusher et al, 2013)

§ They proposed a network dependence assumption (Markov dependence):
§ Two tie variables are conditionally independent unless they share a 

node

• Edges are conditionally dependent if and only if they share a node (Frank 
& Strauss, 1986)

• Frank and Strauss showed that configurations in this model comprised 
edges, stars and triangles
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Simulated results from Bernoulli graph

Statistics from a simulated sample of Bernoulli graph distribution (blue) around 
the observed statistic (N of triangles) 
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Simulated results from Bernoulli graph

Statistics from a simulated sample of Bernoulli graph distribution (blue), plus 
2-stars (green) around the observed statistic (N of triangles) 
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Simulated results from Bernoulli graph

Statistics from a simulated sample of Bernoulli graph distribution (blue), plus 
2-stars (green), plus 3-stars and triangle (grey: Markov model) around the 
observed statistic (N of triangles) 27



Markov model

§ Markov random graph 
distributions provide 
statistical models for 
social networks based 
on plausible 
assumptions and 
importantly can 
represent clustering 
through the triangle 
parameter 😀🤓
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§ The “leakage” shows a common problem with Markov models – they are 
not always stable; and may be degenerate 😱😓

§ They can’t capture tie formation processes in the denser regions



Exercise 3
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Exercise 3

§ Use the fishermen’s network (85 nodes)

§ Try to estimate an edge/2-star/3-star/triangle Markov model

§ You may find the convergence ratios very bad
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Social circuit model

§ Snijders, T.A.B., Pattison, P., Robins, G.L., & Handcock, M. (2006). 
New specifications for exponential random graph models. Sociological 
Methodology, 36, 99-153.

§ Social circuit dependence (Network ties self-organize within 4-cycles): two 
possible network ties are conditionally dependent if they would form a 
4-cycle (Pattison & Robins, 2002; Snijders et al, 2006)
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§ Larger network configurations emerge: 
parameters for degree sequences, denser 
regions of triangulation, multiple 
connectivity.

§ This dependence assumption that captures 
emergence may be necessary to model 
real social networks (Robins, Snijders, 
Wang, Handcock & Pattison, 2007)



Network configurations in SC models
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Possible parameters for SCMs in MPnet
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§ Edge

§ Alternating star (AS)
§ Alternating triangles (AT)
§ Alternating 2-path (A2P) 



Exercise 4
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Exercise 4

§ Use the fishermen’s undirected network (85 nodes)

§ Try to fit a Markov model

§ Fit a SC model

§ Use edges, AS, AT, A2P
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Questions?!


